On the Direct Indecomposability of Infinite Irreducible Coxeter Groups and the Isomorphism Problem of Coxeter Groups
نویسنده
چکیده
In this paper we prove that any irreducible Coxeter group of infinite order is directly indecomposable as an abstract group, without the finite rank assumption. The key ingredient of the proof is that we can determine, for an irreducible Coxeter group W , the centralizers in W of the normal subgroups of W that are generated by involutions. As a consequence, we show that the problem of deciding whether two general Coxeter groups are isomorphic, as abstract groups, is reduced to the case of irreducible Coxeter groups, withoutgroups, is reduced to the case of irreducible Coxeter groups, without assuming the finiteness of the number of the irreducible components or their ranks. We also give a description of the automorphism group of a general Coxeter group in terms of those of its irreducible components.
منابع مشابه
Irreducible Coxeter Groups
We prove that an infinite irreducible Coxeter group cannot be a non-trivial direct product. Let W be a Coxeter group, and write W = W1 × · · · ×Wp ×Wp+1, where W1, . . . ,Wp are infinite irreducible Coxeter groups, and Wp+1 is a finite one. As an application of the main result, we obtain that W1, . . . ,Wp are unique and Wp+1 is unique up to isomorphism. That is, if W = W̃1 × · · · × W̃q × W̃q+1 i...
متن کاملOn the Isomorphism Problem for Finitely Generated Coxeter Groups. I Basic Matching
The isomorphism problem for finitely generated Coxeter groups is the problem of deciding if two finite Coxeter matrices define isomorphic Coxeter groups. Coxeter [3] solved this problem for finite irreducible Coxeter groups. Recently there has been considerable interest and activity on the isomorphism problem for arbitrary finitely generated Coxeter groups. In this paper, we determine some stro...
متن کاملQuotient Isomorphism Invariants of a Finitely Generated Coxeter Group
The isomorphism problem for finitely generated Coxeter groups is the problem of deciding if two finite Coxeter matrices define isomorphic Coxeter groups. Coxeter [4] solved this problem for finite irreducible Coxeter groups. Recently there has been considerable interest and activity on the isomorphism problem for arbitrary finitely generated Coxeter groups. In this paper we describe a family of...
متن کاملMatching Theorems for Systems of a Finitely Generated Coxeter Group
The isomorphism problem for finitely generated Coxeter groups is the problem of deciding if two finite Coxeter matrices define isomorphic Coxeter groups. Coxeter [3] solved this problem for finite irreducible Coxeter groups. Recently there has been considerable interest and activity on the isomorphism problem for arbitrary finitely generated Coxeter groups. For a recent survey, see Mühlherr [10...
متن کاملAutomorphisms of nearly finite Coxeter groups
Suppose that W is an infinite Coxeter group of finite rank n, and suppose that W has a finite parabolic subgroup WJ of rank n 1. Suppose also that the Coxeter diagram of W has no edges with infinite labels. Then any automorphism of W that preserves reflections lies in the subgroup of AutðWÞ generated by the inner automorphisms and the automorphisms induced by symmetries of the Coxeter graph. If...
متن کامل